If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+140x-9600=0
a = 3; b = 140; c = -9600;
Δ = b2-4ac
Δ = 1402-4·3·(-9600)
Δ = 134800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{134800}=\sqrt{400*337}=\sqrt{400}*\sqrt{337}=20\sqrt{337}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-20\sqrt{337}}{2*3}=\frac{-140-20\sqrt{337}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+20\sqrt{337}}{2*3}=\frac{-140+20\sqrt{337}}{6} $
| 10b-2b-b=7b | | 12+5b-4=23 | | 7x+10=82 | | 1-2(3-2x)=0 | | -x+4=-2-6 | | 5-4x=8-5x | | 6+8x=6-4x | | 6x-3–12x+8=10 | | x/20=0.07 | | 3b+6=-4b-8 | | 2(3+4)=6-4x | | -34+13x=30+5x | | 2d+20=0 | | 22x-3=19x+39 | | 7f-12=36+3f | | 22+5a=2a+31 | | 13+8m=25+6m | | 4x-31=2x+45 | | 42=6(x | | 40-5x=2x-4 | | x+1/2=−3 | | 11x+11X(x+1)+11(x+2)=360 | | 1/4x=31/8 | | 4x–5=7+2x | | d-11/10=-3 | | 36=2c+18 | | j/11+12=18 | | x/12+1=6x=−6 | | 5t+3=t−1 | | 3x-8=9x+11 | | 7–10=3x-2 | | 112(x+50)=200 |